additive and abelian categories
(AB1) pre-abelian category
(AB2) abelian category
(AB5) Grothendieck category
left/right exact functor
(also nonabelian homological algebra)
Context
Basic definitions
Stable homotopy theory notions
Constructions
Lemmas
Homology theories
Theorems
A quasi-abelian category is an additive category admitting the kernels and the cokernels which satisfies the following conditions:
(i) the strict epimorphisms are stable by base changes,
(ii) the strict monomorphisms are stable by co-base changes
This is definition 2.1.1 in (Kashiwara).
The category of bornological vector spaces over the complex numbers is quasi-abelian (Prosmans-Schneiders 00)
The category of bornological abelian groups is quasi-abelian (Bambozzi 14).
Jean-Pierre Schneiders, Quasi-abelian categories and sheaves., Mémoires de la Société Mathématique de France 76 (1999), 144 pp. [doi:10.24033/msmf.389]
Fabienne Prosmans, Jean-Pierre Schneiders, A homological study of bornological spaces, Prepublications Mathematiques de l’Universite Paris 13 46 (2000) [pdf]
Wolfgang Rump, Almost abelian categories, Cahiers de topologie et géométrie différentielle catégoriques, tome 42, no 3 (2001) 163–225. [numdam:CTGDC_2001__42_3_163_0]
Federico Bambozzi, section 1 of: On a generalization of affinoid varieties [arXiv:1401.5702]
Masaki Kashiwara, Equivariant derived category and representation of real semisimple Lie groups, Lecture Notes in Mathematics 1931 (2008) 137–234 [doi:10.1007/978-3-540-76892-0, pdf]
Rhiannon Savage, Koszul monoids in quasi-abelian categories [arXiv:2203.08789]
Last revised on April 7, 2023 at 20:55:08. See the history of this page for a list of all contributions to it.